- Past Issues
- e-Submission
-
2021 Impact Factor 1.766
5-Year Impact Factor 1.674
Editorial Office
- +82-2-563-0935
- +82-2-558-2230
- submission@kssse.or.kr
- https://www.kssse.or.kr/
2021 Impact Factor 1.766
5-Year Impact Factor 1.674
The Korean Society of Surface Science and Engineering 2024;57(5):425-431. Published online: Nov, 5, 2024
DOI : https://doi.org/10.5695/JSSE.2024.57.5.425
As demand in the electric vehicle market increases, the development of high capacity, high energy density lithium-ion batteries (LIBs) is required. Silicon has a extremely high theoretical capacity of 4200 mAh/g, but low cycle life and structural instability due to high volume expansion during charging and discharging are critical issue to solve. A reduced silicon oxide has also a high theoretical capacity of 2500 mAh/g and recently studied extensively for its low-cost, superior cycle life, and structural stability.
Keywords Lithium ion batteries; Anode material; Magnesiothermic reduction reaction; Reduced silicon oxide